If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16-x^2/(x^2+6x-40)=0
Domain of the equation: (x^2+6x-40)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
x^2+6x!=40
x∈R
-x^2+16*(x^2+6x-40)=0
We add all the numbers together, and all the variables
-1x^2+16*(x^2+6x-40)=0
We multiply parentheses
-1x^2+16x^2+96x-640=0
We add all the numbers together, and all the variables
15x^2+96x-640=0
a = 15; b = 96; c = -640;
Δ = b2-4ac
Δ = 962-4·15·(-640)
Δ = 47616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47616}=\sqrt{256*186}=\sqrt{256}*\sqrt{186}=16\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{186}}{2*15}=\frac{-96-16\sqrt{186}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{186}}{2*15}=\frac{-96+16\sqrt{186}}{30} $
| 21x=588 | | 3(x+4)-15=6(x+5) | | 105=-5(1-4x) | | 3-3x+4x=-4 | | y/4+15=21 | | 2=u-89/3 | | 3(4r–7)=27 | | 2.4x+8=105.6 | | 9–4x=-15 | | -4(+3)=-12-4x | | 19=2v-11 | | 4c+9=8c+1-(2c-11)÷3 | | 8x+12=2x–18 | | 3-7x=5x-3(x+5) | | 5+4y=13 | | 2(d−15)−9=–1 | | (-2/3)^2m-1÷(-2/3)^1=4/9(-2/3)^3 | | 5(2x-3)+5=40 | | 11=3p-7=6p+5-3p | | 5(x-6)=-2x+12 | | 2(2×+2)=4x+4 | | (2/x)=(1/8x)+3 | | 2a+5=5a-4 | | x/18+5=6 | | 6(3x+9)=2(9x-7) | | 5×(x+3)-3×(8-2x)=2x-(x+1)+12 | | 6x-3+3=15x+3+3 | | 7x–10=4x–29=+5x-9 | | 24+.35p=80 | | 5(x+8)-7=10 | | 4(5x+8)=-47+19 | | 3/4(2/3x-4)=2/3(1/4x+9) |